Generalized centro-invertible matrices with applications
نویسندگان
چکیده
منابع مشابه
Sums of Alternating Matrices and Invertible Matrices
A square matrix is said to be alternating-clean if it is the sum of an alternating matrix and an invertible matrix. In this paper, we determine all alternating-clean matrices over any division ring K. If K is not commutative, all matrices are alternating-clean, with the exception of the 1× 1 zero matrix. If K is commutative, all matrices are alternating-clean, with the exception of odd-size alt...
متن کاملGeneralized M - Matrices and Applications
Recently, two distinct directions have been taken in an attempt to generalize the definition of an M-matrix. Even for nonsingular matrices, these two generalizations are not equivalent. The role of these and other classes of recently defined matrices is indicated showing their usefulness in various applications.
متن کاملThe Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملFountain Codes and Invertible Matrices
This paper deals with Fountain codes, and especially with their encoding matrices, which are required here to be invertible. A result is stated that an encoding matrix induces a permutation. Also, a result is that encoding matrices form a group with multiplication operation. An encoding is a transformation, which reduces the entropy of an initially high-entropy input vector. A special encoding ...
متن کاملPath Connectedness and Invertible Matrices
Though path-connectedness is a very geometric and visual property, math lets us formalize it and use it to gain geometric insight into spaces that we cannot visualize. In these notes, we will consider spaces of matrices, which (in general) we cannot draw as regions in R or R. To begin studying these spaces, we first explicitly define the concept of a path. Definition 1.1. A path in X is a conti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2014
ISSN: 0893-9659
DOI: 10.1016/j.aml.2014.07.008